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APPENDIX A: IMPLEMENTATION DETAILS FOR
MIXED-PRECISION QUANTIZATION IN SECTION
4.3.1
In order to further enhance the performance of Quant-
former, we integrated the presented techniques with mixed-
precision quantization methods including HAQ [6] and Ed-
MIPS [1]. Mixed-precision quantization selects the bitwidth
for each layer according to the informativeness to achieve
more optimal accuracy-complexity trade-offs.

For the implementation of HAQ on vision transformers,
we applied deep deterministic policy gradient (DDPG) [3]
to predict the optimal bitwidth of each fully-connected layer
in vision transformers, where the input was set as the state
and the action of last step. The critic networks consisted of
two fully-connected layers with the hidden size as 400, and
the actor networks included two fully-connected layers with
hidden size as 300 and extra two hidden vectors. The output
of actor networks was fed forward into sigmoid function to
be ranged into [0, 1]. The optimization of the DDPG used
the AdamW optimizer [2] with the learning rate 1e-4 for the
actor networks and 1e-3 for the critic networks respectively.
The weight noise during the exploration process was gen-
erated from truncated normal distribution ranged in [0, 1],
where the standard error was initialized as 0.5 and decayed
by 0.99 after each epoch. The data for exploration was
randomly selected from 100 classes of ImageNet, and the
finetuning epoch number of quantized models for reward
acquisition during the search stage was set as one.

The learning rate of AdamW optimizer applied in Ed-
MIPS was initialized as 1e-4 and 1e-5 for the network
parameters and the architecture parameters respectively,
where all architecture parameters were equal for the ini-
tialization. The supernet was trained by 50 epochs with
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the cosine annealing strategy for learning rate decay, where
the ending learning rates were 100× less than the initial
ones. After the search process, the final model was obtained
by discretizing the supernet with the branch in largest
importance weights.

The mixed-precision vision transformers acquired by
HAQ and EdMIPS were finetuned by 120 epochs with
the AdamW optimizer [2]. The learning rate was flexibly
initialized according to the model complexity, where more
lightweight transformers leveraged smaller initialized learn-
ing rate and vice versa. The cosine annealing strategy for
learning rate decay was also applied with the ending learn-
ing rate 1e-6. For the combination of mixed-precision quan-
tization and our Quantformer, we also followed the details
described in Section 4.1 of the manuscript to implement self-
attention rank preservation and group-wise quantization.
The batchsize was set to 512 for all experiments in the
integration of mixed-precision quantization methods and
Quantformer.

APPENDIX B: COMPARISON WITH RANKING-AWARE
QUANTIZATION IN [4]
Ranking-aware quantization for self-attention [4] considers
the self-attention rank consistency between the quantized
and full-precision vision transformers, and they apply hinge
loss as the optimization objective:

L =
h∑

k=1

w−1∑
i=1

w∑
j=i+1

Φ((Âki − Âkj) · sign(Aki −Akj)) (1)

where Φ(p) = (θ − p)+ is the hinge function with the
hyperparameter θ, and (h,w) is the size of the self-attention
matrix. Âki and Aki are the elements in the kth row and
ith column of the quantized and full-precision self-attention
respectively. The loss achieves zero only when the self-
attention element pairs are in correct order and differed by
a margin. Although the hinge loss can benefit self-attention
rank consistency preservation, it ignores the entropy vari-
ance in quantized self-attention caused by capacity differ-
ence. In Figure 1, we visualize the self-attention element
distribution of quantized vision transformers optimized by
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Figure 1. The visualization for self-attention for the 2nd layer in DeiT-T
of (a) full-precision models, (b) 4-bit models optimized by [4], (c) 4-bit
models optimized by our method.

Table 1
The accuracy and the training cost of quantized DeiT-T models

optimized by hinge loss and (7) in the manuscript.

Precision Methods Top-1 Top5 Training Cost

4-bit Hinge loss 68.1 88.7 120 GPU hours
Quantformer 69.9 89.7 28 GPU hours

3-bit Hinge loss 61.5 84.6 120 GPU hours
Quantformer 65.2 87.0 28 GPU hours

2-bit Hinge loss 57.9 82.0 120 GPU hours
Quantformer 60.7 84.0 28 GPU hours

the hinge loss and (7) in the manuscript, where the self-
attention in the 2nd layer of 4-bit DeiT-T is leveraged for
demonstration. Each element pair with the correct relative
order is equally encouraged in [4] to achieve the differ-
ence over the margin, which results in excessively high
entropy for quantized self-attention with capacity insuffi-
ciency. Since the computational complexity of the hinge loss
and our capacity-aware self-attention rank consistency loss
is respectively O(hw2) and O(hw), calculating the exact
value of the hinge loss is much more complicated than
(7) in the manuscript, which causes higher training cost in
quantization-aware training. Table 1 illustrates the accuracy
and the training cost of the quantized DeiT-T optimized by
the hinge loss in [4] and (7) in the manuscript, where our
loss achieves higher accuracy due to the capacity-aware self-
attention distribution and requires lower training cost.

C. TECHNICAL SOUNDNESS OF THE SELF-
ATTENTION RANK CONSISTENCY LOSS IN (7)
The goal of (6) in the manuscript contains (a) keeping
the self-attention rank consistency between the quantized
and full-precision transformers, and (b) enabling the self-
attention distribution to be adjusted according to the net-
work capacity. As (6) in the manuscript cannot be directly
optimized via back-propagation, we present the surrogate
loss shown by (7) in the manuscript to achieve the self-
attention rank consistency preservation with capacity-aware
distribution. The intuition is that by changing the power of
full-precision self-attention, the distribution concentration
can be adjusted without modifying the rank, so that min-
imizing (7) in the manuscript can simultaneously realize the
above two goals. In order to verify the technical soundness
of (7) in the manuscript, we have provided the theoretical
proof for the strong correlation between the (6) and (7)
in the manuscript, shown the model statistics of the self-
attention rank in the quantized and full-precision vision
transformers and conducted ablation studies that leverage
different alternatives to optimize the original loss.

Theoretical proof: Let us assume the query Q and key
K satisfying the Gaussian distribution, and the variable QK√

d
also meets the Gaussian distribution. Denoting the elements
in the matrix QK√

d
as x, the probability distribution function

(PDF) of the variable x can be written as follows with the
mean µ and the standard deviation σ:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (2)

The subsequent softmax function for self-attention calcula-
tion with row-wise normalization can be represented in the
following:

ai =
exi∑n

k=1 e
xk

(3)

where ai and xi represent the ith element in the given row
of self-attention and QK√

d
respectively. As n is usually large

(192 for DeiT-T), we can regard that the dominator in (3) is
a constant S and independent of xi because exi only makes
little contribution to S. For the softmax function, shifting all
x variables by a constant distance does not affect the value
of a, so that we shift all QK√

d
by µ to simplify the distribution.

The distribution of the elements in self-attention is written
as follows, where we omit the subscript i for simplicity:

p(a) =
1√
2πσa

e−
(log(Sa))2

2σ2 (4)

where log(x) means the natural logarithm. Since the cumu-
lative probability function (CDF) for a can approximately
demonstrate the ranking of the self-attention element in
the same row, the self-attention rank preservation objective
shown by (6) in the manuscript can be represented as
follows:

Jsrc = ||
∫ aq

−∞
p(aq)daq −

∫ ar

−∞
p(ar)dar||

= ||Φ(
log(aq)− log( 1

Sq
)

σq
)− Φ(

log(ar)− log( 1
Sr

)

σr
)|| (5)

where Φ(x) is the CDF of standard normal distribution for
variable x, and the subscript q and r mean corresponding
variables in quantized and full-precision vision transform-
ers respectively. The optimization objective can be equiva-
lently formulated as follows:

min Jsrc ⇐⇒ min ||
log(aq)− log( 1

Sq
)

σq
−

log(ar)− log( 1
Sr

)

σr
||

⇐⇒ min ||aq − aσq/σr
r · S

σq/σr
r

Sq
|| (6)

According to the constraint in (6) of the manuscript and
the definition of self-attention a in (3), we can obtain the
following equation:

logSq −
∑n

i=1 xi,qe
xi,q∑n

i=1 e
xi,q

= Cl(logSr −
∑n

i=1 xi,re
xi,r∑n

i=1 e
xi,r

) (7)

Denoting the minimum and maximum value of the se-
quence {xi} as xmin and xmax respectively,

∑n
i=1 xie

xi∑n
i=1 exi

∈
[xmin, xmax] is much smaller than S because the number of
self-attention elements in each row denoted as n is usually
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large. The following equation can be accurate approxima-
tion for (7):

logSq = Cl logSr (8)

We can also acquire the continuous form of the constraint in
(6) of the manuscript as follows:∫ 1

0
aq log aqp(aq)daq = Cl

∫ 1

0
ar log arp(ar)dar (9)

To calculate the integral in (9), the PDF of a can be approxi-
mated by the power function in the interval a ∈ [ 1S , b] with
the constant b:

p∗(a) = I(a ∈ [
1

S
, b]) · (k − 1)

Sk−1 − 1
bk−1

· 1

ak
(10)

For the value of a log a, it approaches zero in the interval
a ∈ (0, 1

S ) since S is very large. Since p(a) decays very
quickly and b does not approach zero, the PDF of a also
approaches zero for a ∈ (b, 1). Therefore, the expectation of
a log a for the continuous self-attention distribution can be
rewritten as follows:∫ 1

0
a log ap(a)da ≈

∫ b

1
S

a log ap(a)da ≈
∫ b

1
S

a log ap∗(a)da

= − (k − 1)(k − 2)

bk−2Sk−1 − 1
b

{log b+ (Sb)k−2 logS +
1

k − 2
· [1−

(Sb)k−2]} (11)

Since S is much larger than b (because the number of self-
attention elements in each row denoted as n is large) and
k is larger than 2 in the PDF approximation, the following
approximation holds:∫ 1

0
a log ap(a)da ≈ − (k − 1)(k − 2)

Sk − S
bk−1

Sk−1 logS (12)

We assign the value of b with b = ( S
Sk−d0

) where d0 is a
large constant in the same order with Sk. The relationship
between quantized and full-precision self-attention in the
continuous form can be written as:
k2q − 3kq + 2

d0
Skq−1
q logSq = Cl

k2q − 3kq + 2

d0
Skr−1
r logSr

⇐⇒
k2q − 3kq + 2

d0
Skq−1
q =

k2q − 3kq + 2

d0
Skr−1
r

⇐⇒
k2q − 3kq + 2

d0
Skq−1
q =

k2q − 3kq + 2

d0
SCl(kr−1)
q (13)

Since (13) holds for any self-attention, so the following
equation always holds:

kq − 1 = Cl(kr − 1) (14)

The approximated distribution of the self-attention should
be equal with the true distribution at the point a = 1

S for
accurate approximation, we have the following equation:

p(
1

S
) = p∗(

1

S
)

⇐⇒ S√
2πσ

=
(k − 1)

Sk−1 − 1
bk−1

∗ Sk

⇐⇒
S>> 1

b

1√
2πσ

= k − 1 (15)

Table 2
The accuracy and the self-attention rank difference (SARD) for top-100

pixels in the full-precision self-attention for different bitwidths and
optimization methods in DeiT-T.

Precision Methods Top-1 Top5 SARD
32-bit - 72.2 91.1 -

4-bit
PACT 65.6 87.2 27.81

Hinge loss 68.1 88.7 10.41
Quantformer 69.9 89.7 9.70

3-bit
PACT 60.6 83.9 45.60

Hinge loss 61.5 84.6 15.61
Quantformer 65.2 87.0 14.10

Combining (14) and (15), we acquire the relationship be-
tween σq and σr in (6):

σq =
σr

Cl
(16)

For x satisfying the distribution shown in (2), the new
variable y = x

Cl
also meets the Gaussian distribution with

the mean µ
Cl

and standard deviation σ
Cl

. For elements in
QK√

d
in the full-precision vision transformers denoted as xi,r ,

the standard deviation of yi,r =
xi,r

Cl
equals to σr

Cl
= σq .

Since the mean of xi,r and xi,q both approaches zero in
practical distribution, the distribution of yi,r is the same as
xi,q . Therefore, we have the following equation for large n:

n∑
i=1

exi,q =
n∑

i=1

e
xi,r
Cl (17)

The coefficient in the objective is written as follows:

S
σq/σr
r

Sq
=

(
∑n

i=1 e
xi,r )

1
Cl∑n

i=1 e
xi,q

=
(
∑n

i=1 e
xi,r )

1
Cl∑n

i=1 e
xi,r
Cl

= (
n∑

i=1

a
1
Cl
i,r )

−1

(18)

The layer-wise parameter Cl can be evaluated by Cl =∑
mn Al

q,mn logAl
q,mn∑

mn Al
r,mn logAl

r,mn
for each layer to avoid large fluctuation,

and the objective for self-attention consistency preservation
shown by (6) in the manuscript can be rewritten as follows:

min
n∑

i=1

||ai,q − (
n∑

i=1

a
1
Cl
i,r )

−1 · a
1
Cl
i,r || (19)

which is in the same form as (7) and (8) in the manuscript.
Model statistics: In order to demonstrate that optimiz-

ing (7) in the manuscript can preserve the self-attention
rank consistency as (6) in the manuscript shows, Table 2
depicts the self-attention rank difference (SARD) for top-
100 pixels in the full-precision self-attention for various
bitwidth settings and optimization methods, where the top-
1 accuracy on ImageNet is also provided for reference.
The results indicate our self-attention rank consistency loss
can significantly reduce the SARD for vision transformers,
and the performance on SARD is comparable with the
ranking-aware quantization presented in [4]. Since [4] fails
to consider the capacity variance in vision transformers with
different bitwidths, the top-1 accuracy drops significantly
compared with their full-precision counterparts due to the
capacity insufficiency.

We also provide variable statistics to verify the assump-
tion rationality in the theoretical proof. Figure 2(a) shows an
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(a) (b) (c)

Figure 2. (a) An example of the row-wise self-attention distribution and the distribution shown in (4). We ensemble rows with similar S in the
regression to avoid variance caused by sparse sampling. (b) An example of the self-attention and the approximated distribution shown in (10). (c)

The value of
∑n

i=1 e
xi,q and corresponding

∑n
i=1 e

xi,r
Cl in (17) for different rows of self-attention.

Table 3
The accuracy of quantized DeiT-T with different bitwidth settings and

self-attention rank preservation objectives.

Objective Form Bitwidth Top-1 Top-5

Hinge Loss -
2 57.9 82.0
3 61.5 84.6
4 68.1 88.7

Capacity-aware pl

pl =
√

Er
Eq

2 59.5 83.1
3 64.0 86.6
4 69.1 89.5

pl = exp(Er
Eq

)
2 58.7 82.8
3 64.3 86.6
4 69.0 89.2

pl =
Er
Eq

2 60.7 84.0
3 65.2 87.0
4 69.9 89.7

Random pl

2 55.3 80.7
3 59.7 83.1
4 66.8 88.2

example of the row-wise self-attention distribution, and the
average correlation coefficients for fitting the distribution
shown in (4) across all self-attention layers and test images
in ImageNet are 0.983 and 0.991 for quantized and full-
precision vision transformers, which are relatively high
indicating good fitness. Therefore, we conclude that the
probability density function (4) can accurately represent the
actual distribution of self-attention.

We also fit the self-attention distribution for a ∈ [ 1S , b]
with p∗(a) shown in (10), and Figure 2(b) shows several
examples with the mean correlation coeficient 0.979. We set
S as the value acquired by fitting the true distribution in (4),
and regress the value of k by assigning the large constant
d0 with 600 for both quantized and full-precision vision
transformers. The average value of b for quantized and full-
precision self-attention are 47.9 and 51.2 respectively, so that
the assumption that S is much larger than b holds. The
average value of p(a) at the point a = b is 0.015 approaching
zero, which proves that the integral approximation in (11)
holds.

Figure 2(c) shows the value of
∑n

i=1 e
xi,q and

∑n
i=1 e

xi,r
Cl

in (17) for different rows of self-attention. We observe that
the two terms are strongly correlated for large n.

Comparison with other ranking preservation tech-

Table 4
The accuracy of quantized DeiT-T with different bitwidth settings and

fixed pl in self-attention rank preservation objectives.

pl
2-bit 3-bit 4-bit

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
1 57.9 82.3 63.0 85.6 68.5 89.0
2 58.2 82.4 63.1 85.5 68.9 89.2
3 58.3 82.3 63.5 85.9 68.4 89.1
4 58.5 82.5 62.5 85.2 67.8 88.5
5 57.1 82.0 62.4 85.0 67.0 88.2

niques: To illustrate the effectiveness of capacity-aware self-
attention rank preservation loss, we conducted ablation
studies by utilizing other rank preservation loss and as-
signing different loss forms for capacity-aware self-attention
rank preservation. For other rank preservation loss, we
leverage the widely adopted hinge loss [4], [5], [7] shown
in (1). For other loss forms of capacity-aware self-attention
rank preservation, we assign pl with random numbers,
various constants and different combination of self-attention
entropy. The ablation studies were conducted on ImageNet
with the DeiT-T architecture in 2, 3, 4 bits, and the results
are reported in Table 3-4.

Although the hinge loss can preserve the rank con-
sistency between the quantized and full-precision self-
attention, it ignores the model capacity variance among
different bitwidths. As a result, the capacity insufficiency
in low-precision networks degrades the performance signif-
icantly. Our capacity-aware self-attention rank preservation
loss with constant pl acquires worse performance compared
with Quantformer, because the inaccurate capacity estima-
tion leads to capacity insufficiency for networks in low
capacity and fails to fully utilize the capacity for networks
in high capacity. Meanwhile, randomly pl underperforms
the vanilla quantized vision transformers because the un-
informative change of pl causes convergence problems. For
assigning pl with different combinations of self-attention en-
tropy, the division between the entropy of the full-precision
and quantized self-attention achieves the highest accuracy
as it is consistent with the objective in (19).

In conclusion, leveraging (7) and (8) in the manuscript
as alternatives of (6) in the manuscript for capacity-aware
self-attention rank preservation is technically sounded, and
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Table 5
The storage cost, computational complexity and the accuracy on ImageNet of different network quantization methods across various vision

transformer architectures and bitwidth settings. Param. depicts the number of network parameters and BOPs is the bit-operations, which evaluate
the storage and computational cost respectively. W/o SRC and w/o GQ respectively demonstrate Quantformer without self-attention rank

consistency loss and without group-wise quantization.

Model Method
2-bit 3-bit 4-bit

Param. BOPs Top-1 Top-5 Param. BOPs Top-1 Top-5 Param. BOPs Top-1 Top-5

DeiT-T

Full-precision 5.11M 1.3T 72.2 91.1 5.11M 1.3T 72.2 91.1 5.11M 1.3T 72.2 91.1
OCS 0.40M 22.5G 57.2 81.2 0.54M 27.9G 60.4 83.5 0.69M 35.0G 65.7 86.9

W/o SRC 0.39M 23.2G 59.8 83.7 0.54M 28.5G 63.9 86.2 0.69M 35.8G 68.4 88.6
W/o GQ 0.39M 22.3G 57.9 82.1 0.53M 27.6G 62.0 84.8 0.69M 34.9G 68.0 88.5

Quantformer 0.39M 23.2G 60.7 84.0 0.54M 28.5G 65.2 87.0 0.69M 35.8G 69.9 89.7

DeiT-S

Full-precision 22.10M 4.7T 79.9 95.0 22.10M 4.7T 79.9 95.0 22.10M 4.7T 79.9 95.0
OCS 1.58M 54.2G 60.7 84.0 2.23M 74.9G 72.8 91.0 2.90M 104.5G 75.2 92.7

W/o SRC 1.55M 54.8G 63.7 86.4 2.22M 75.7G 74.1 92.3 2.90M 105.0G 77.2 93.7
W/o GQ 1.55M 53.0G 61.9 84.7 2.22M 73.9G 73.0 91.0 2.89M 103.2G 76.9 93.2

Quantformer 1.55M 54.8G 65.2 87.1 2.22M 75.7G 75.4 92.8 2.90M 105.0G 78.2 94.2

DeiT-B

Full-precision 86.60M 18.0T 81.8 95.6 86.60M 18.0T 81.8 95.6 86.60M 18.0T 81.8 95.6
OCS 5.79M 140.7G 69.4 89.1 8.48M 226.8G 77.2 93.5 11.23M 345.2G 77.7 93.4

W/o SRC 5.71M 143.2G 71.5 90.7 8.38M 226.9G 77.9 93.6 11.04M 344.0G 79.0 93.8
W/o GQ 5.71M 139.5G 71.2 90.2 8.38M 223.2G 77.1 93.7 11.04M 340.3G 78.8 94.0

Quantformer 5.71M 143.2G 73.8 92.0 8.38M 226.9G 78.3 93.9 11.04M 344.0G 79.7 94.3

performs better than other rank preservation loss and objec-
tive forms.

APPENDIX D. RESULTS COMPARING WITH MORE
BASELINE METHODS

We conducted experiments to compare our Quantformer
with more baseline methods on ImageNet datasets across
different vision transformer architectures. The baseline
methods include OCS [8], Quantformer without SRC loss,
Quantformer without group-wise quantization. The goal
of the OCS method [8] is dealing with the outliers that
cause large quantization errors. OCS duplicates the channels
containing outliers and halves the channel values including
weights and activations. The network remains functionally
identical while the outliers are moved towards the distri-
bution center. In order to verify the effectiveness of each
presented technique, we also leverage Quantformer without
SRC loss and Quantformer without group-wise quantiza-
tion as baselines. Table 5 demonstrates the results, where our
Quantformer outperforms the listed baseline methods by a
sizable margin. Although OCS [8] and Quantformer shares
the same goal for quantization error minimization with
slight computation and storage overhead, the quantization
policy with shared thresholds and discretization points for
patch features distributing diversely across channels still
causes sizable clipping and rounding errors. Meanwhile, the
capacity-aware self-attention rank preservation and group-
wise quantization both make contributions to the top-1
accuracy.

APPENDIX E. COMPARISON AMONG LAYER-,
CHANNEL-, GROUP-WISE QUANTIZATION

Layer-wise quantization for features in vision transformers
significantly degrades the performance due to the large
rounding and clipping errors, while channel-wise quanti-
zation strategies add extremely high computation overhead
because of the rescaling before accumulation in integer

Table 6
The accuracy of 4-bit Quantformer, where different quantization
strategies including layer-, channel-, group-wise quantization are
adopted. The architecture is Deit-T. Param. depicts the number of

network parameters and BOPs is the bit-operations.

#Groups. Params. BOPs Top-1
Layer-wise 0.69M 34.9G 68.0

Channel-wise 0.84M 109.8G 70.5
Group-wise 0.69M 35.8G 69.9

arithmetic. Therefore, we present group-wise quantization
to achieve more optimal accuracy-complexity trade-offs via
adopting same quantization strategies for feature elements
distributed similarly. Table 6 shows the top-1 accuracy on
ImageNet, the number of parameters and BOPs of quantized
Deit-T, where our Quantformer is more practical in realistic
applications.
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